/* */
DEFINITIONS
This source file includes following definitions.
- enum_values_pack
- grep_i
- grep_iter_i
- enum_grep
- count_i
- count_iter_i
- count_all_i
- enum_count
- find_i
- enum_find
- find_index_i
- find_index_iter_i
- enum_find_index
- find_all_i
- enum_find_all
- reject_i
- enum_reject
- collect_i
- collect_all
- enum_collect
- enum_to_a
- inject_i
- inject_op_i
- enum_inject
- partition_i
- enum_partition
- group_by_i
- enum_group_by
- first_i
- enum_first
- enum_sort
- sort_by_i
- sort_by_cmp
- enum_sort_by
- enum_all_func
- DEFINE_ENUMFUNCS
- enum_any_func
- DEFINE_ENUMFUNCS
- enum_one_func
- DEFINE_ENUMFUNCS
- enum_none_func
- DEFINE_ENUMFUNCS
- min_i
- min_ii
- enum_min
- max_i
- max_ii
- enum_max
- minmax_i
- minmax_ii
- enum_minmax
- min_by_i
- enum_min_by
- max_by_i
- enum_max_by
- minmax_by_i
- enum_minmax_by
- member_i
- enum_member
- each_with_index_i
- enum_each_with_index
- enum_reverse_each
- zip_ary
- call_next
- call_stop
- zip_i
- enum_zip
- take_i
- enum_take
- take_while_i
- enum_take_while
- drop_i
- enum_drop
- drop_while_i
- enum_drop_while
- cycle_i
- enum_cycle
- Init_Enumerable
/**********************************************************************
enum.c -
$Author: yugui $
created at: Fri Oct 1 15:15:19 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/util.h"
#include "node.h"
VALUE rb_mEnumerable;
static ID id_each, id_eqq, id_cmp, id_next, id_size;
static VALUE
enum_values_pack(int argc, VALUE *argv)
{
if (argc == 0) return Qnil;
if (argc == 1) return argv[0];
return rb_ary_new4(argc, argv);
}
#define ENUM_WANT_SVALUE() do { \
i = enum_values_pack(argc, argv); \
} while (0)
#define enum_yield rb_yield_values2
static VALUE
grep_i(VALUE i, VALUE *arg, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) {
rb_ary_push(arg[1], i);
}
return Qnil;
}
static VALUE
grep_iter_i(VALUE i, VALUE *arg, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) {
rb_ary_push(arg[1], rb_yield(i));
}
return Qnil;
}
/*
* call-seq:
* enum.grep(pattern) => array
* enum.grep(pattern) {| obj | block } => array
*
* Returns an array of every element in <i>enum</i> for which
* <code>Pattern === element</code>. If the optional <em>block</em> is
* supplied, each matching element is passed to it, and the block's
* result is stored in the output array.
*
* (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
* c = IO.constants
* c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
* res = c.grep(/SEEK/) {|v| IO.const_get(v) }
* res #=> [0, 1, 2]
*
*/
static VALUE
enum_grep(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
VALUE arg[2];
arg[0] = pat;
arg[1] = ary;
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)arg);
return ary;
}
static VALUE
count_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
ENUM_WANT_SVALUE();
if (rb_equal(i, memo[1])) {
memo[0]++;
}
return Qnil;
}
static VALUE
count_iter_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
if (RTEST(enum_yield(argc, argv))) {
memo[0]++;
}
return Qnil;
}
static VALUE
count_all_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
memo[0]++;
return Qnil;
}
/*
* call-seq:
* enum.count => int
* enum.count(item) => int
* enum.count {| obj | block } => int
*
* Returns the number of items in <i>enum</i>, where #size is called
* if it responds to it, otherwise the items are counted through
* enumeration. If an argument is given, counts the number of items
* in <i>enum</i>, for which equals to <i>item</i>. If a block is
* given, counts the number of elements yielding a true value.
*
* ary = [1, 2, 4, 2]
* ary.count # => 4
* ary.count(2) # => 2
* ary.count{|x|x%2==0} # => 3
*
*/
static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
VALUE memo[2]; /* [count, condition value] */
rb_block_call_func *func;
if (argc == 0) {
if (rb_block_given_p()) {
func = count_iter_i;
}
else {
if (rb_respond_to(obj, id_size)) {
return rb_funcall(obj, id_size, 0, 0);
}
func = count_all_i;
}
}
else {
rb_scan_args(argc, argv, "1", &memo[1]);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = count_i;
}
memo[0] = 0;
rb_block_call(obj, id_each, 0, 0, func, (VALUE)&memo);
return INT2NUM(memo[0]);
}
static VALUE
find_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
*memo = i;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.detect(ifnone = nil) {| obj | block } => obj or nil
* enum.find(ifnone = nil) {| obj | block } => obj or nil
*
* Passes each entry in <i>enum</i> to <em>block</em>. Returns the
* first for which <em>block</em> is not <code>false</code>. If no
* object matches, calls <i>ifnone</i> and returns its result when it
* is specified, or returns <code>nil</code>
*
* (1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> nil
* (1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> 35
*
*/
static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
VALUE memo = Qundef;
VALUE if_none;
rb_scan_args(argc, argv, "01", &if_none);
RETURN_ENUMERATOR(obj, argc, argv);
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)&memo);
if (memo != Qundef) {
return memo;
}
if (!NIL_P(if_none)) {
return rb_funcall(if_none, rb_intern("call"), 0, 0);
}
return Qnil;
}
static VALUE
find_index_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
ENUM_WANT_SVALUE();
if (rb_equal(i, memo[2])) {
memo[0] = UINT2NUM(memo[1]);
rb_iter_break();
}
memo[1]++;
return Qnil;
}
static VALUE
find_index_iter_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
if (RTEST(enum_yield(argc, argv))) {
memo[0] = UINT2NUM(memo[1]);
rb_iter_break();
}
memo[1]++;
return Qnil;
}
/*
* call-seq:
* enum.find_index(value) => int or nil
* enum.find_index {| obj | block } => int or nil
*
* Compares each entry in <i>enum</i> with <em>value</em> or passes
* to <em>block</em>. Returns the index for the first for which the
* evaluated value is non-false. If no object matches, returns
* <code>nil</code>
*
* (1..10).find_index {|i| i % 5 == 0 and i % 7 == 0 } #=> nil
* (1..100).find_index {|i| i % 5 == 0 and i % 7 == 0 } #=> 34
* (1..100).find_index(50) #=> 49
*
*/
static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
VALUE memo[3]; /* [return value, current index, condition value] */
rb_block_call_func *func;
if (argc == 0) {
RETURN_ENUMERATOR(obj, 0, 0);
func = find_index_iter_i;
}
else {
rb_scan_args(argc, argv, "1", &memo[2]);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = find_index_i;
}
memo[0] = Qnil;
memo[1] = 0;
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return memo[0];
}
static VALUE
find_all_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
rb_ary_push(ary, i);
}
return Qnil;
}
/*
* call-seq:
* enum.find_all {| obj | block } => array
* enum.select {| obj | block } => array
*
* Returns an array containing all elements of <i>enum</i> for which
* <em>block</em> is not <code>false</code> (see also
* <code>Enumerable#reject</code>).
*
* (1..10).find_all {|i| i % 3 == 0 } #=> [3, 6, 9]
*
*/
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
static VALUE
reject_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (!RTEST(rb_yield(i))) {
rb_ary_push(ary, i);
}
return Qnil;
}
/*
* call-seq:
* enum.reject {| obj | block } => array
*
* Returns an array for all elements of <i>enum</i> for which
* <em>block</em> is false (see also <code>Enumerable#find_all</code>).
*
* (1..10).reject {|i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
*
*/
static VALUE
enum_reject(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, reject_i, ary);
return ary;
}
static VALUE
collect_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
rb_ary_push(ary, enum_yield(argc, argv));
return Qnil;
}
static VALUE
collect_all(VALUE i, VALUE ary, int argc, VALUE *argv)
{
rb_ary_push(ary, enum_values_pack(argc, argv));
return Qnil;
}
/*
* call-seq:
* enum.collect {| obj | block } => array
* enum.map {| obj | block } => array
*
* Returns a new array with the results of running <em>block</em> once
* for every element in <i>enum</i>.
*
* (1..4).collect {|i| i*i } #=> [1, 4, 9, 16]
* (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
*
*/
static VALUE
enum_collect(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, collect_i, ary);
return ary;
}
/*
* call-seq:
* enum.to_a => array
* enum.entries => array
*
* Returns an array containing the items in <i>enum</i>.
*
* (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
* { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
*/
static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
rb_block_call(obj, id_each, argc, argv, collect_all, ary);
return ary;
}
static VALUE
inject_i(VALUE i, VALUE p, int argc, VALUE *argv)
{
VALUE *memo = (VALUE *)p;
ENUM_WANT_SVALUE();
if (memo[0] == Qundef) {
memo[0] = i;
}
else {
memo[0] = rb_yield_values(2, memo[0], i);
}
return Qnil;
}
static VALUE
inject_op_i(VALUE i, VALUE p, int argc, VALUE *argv)
{
VALUE *memo = (VALUE *)p;
ENUM_WANT_SVALUE();
if (memo[0] == Qundef) {
memo[0] = i;
}
else {
memo[0] = rb_funcall(memo[0], (ID)memo[1], 1, i);
}
return Qnil;
}
/*
* call-seq:
* enum.inject(initial, sym) => obj
* enum.inject(sym) => obj
* enum.inject(initial) {| memo, obj | block } => obj
* enum.inject {| memo, obj | block } => obj
*
* enum.reduce(initial, sym) => obj
* enum.reduce(sym) => obj
* enum.reduce(initial) {| memo, obj | block } => obj
* enum.reduce {| memo, obj | block } => obj
*
* Combines all elements of <i>enum</i> by applying a binary
* operation, specified by a block or a symbol that names a
* method or operator.
*
* If you specify a block, then for each element in <i>enum<i>
* the block is passed an accumulator value (<i>memo</i>) and the element.
* If you specify a symbol instead, then each element in the collection
* will be passed to the named method of <i>memo</i>.
* In either case, the result becomes the new value for <i>memo</i>.
* At the end of the iteration, the final value of <i>memo</i> is the
* return value fo the method.
*
* If you do not explicitly specify an <i>initial</i> value for <i>memo</i>,
* then uses the first element of collection is used as the initial value
* of <i>memo</i>.
*
* Examples:
*
* # Sum some numbers
* (5..10).reduce(:+) #=> 45
* # Same using a block and inject
* (5..10).inject {|sum, n| sum + n } #=> 45
* # Multiply some numbers
* (5..10).reduce(1, :*) #=> 151200
* # Same using a block
* (5..10).inject(1) {|product, n| product * n } #=> 151200
* # find the longest word
* longest = %w{ cat sheep bear }.inject do |memo,word|
* memo.length > word.length ? memo : word
* end
* longest #=> "sheep"
*
*/
static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
VALUE memo[2];
VALUE (*iter)(VALUE, VALUE, int, VALUE*) = inject_i;
switch (rb_scan_args(argc, argv, "02", &memo[0], &memo[1])) {
case 0:
memo[0] = Qundef;
break;
case 1:
if (rb_block_given_p()) {
break;
}
memo[1] = (VALUE)rb_to_id(memo[0]);
memo[0] = Qundef;
iter = inject_op_i;
break;
case 2:
if (rb_block_given_p()) {
rb_warning("given block not used");
}
memo[1] = (VALUE)rb_to_id(memo[1]);
iter = inject_op_i;
break;
}
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
if (memo[0] == Qundef) return Qnil;
return memo[0];
}
static VALUE
partition_i(VALUE i, VALUE *ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
rb_ary_push(ary[0], i);
}
else {
rb_ary_push(ary[1], i);
}
return Qnil;
}
/*
* call-seq:
* enum.partition {| obj | block } => [ true_array, false_array ]
*
* Returns two arrays, the first containing the elements of
* <i>enum</i> for which the block evaluates to true, the second
* containing the rest.
*
* (1..6).partition {|i| (i&1).zero?} #=> [[2, 4, 6], [1, 3, 5]]
*
*/
static VALUE
enum_partition(VALUE obj)
{
VALUE ary[2];
RETURN_ENUMERATOR(obj, 0, 0);
ary[0] = rb_ary_new();
ary[1] = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)ary);
return rb_assoc_new(ary[0], ary[1]);
}
static VALUE
group_by_i(VALUE i, VALUE hash, int argc, VALUE *argv)
{
VALUE group;
VALUE values;
ENUM_WANT_SVALUE();
group = rb_yield(i);
values = rb_hash_aref(hash, group);
if (NIL_P(values)) {
values = rb_ary_new3(1, i);
rb_hash_aset(hash, group, values);
}
else {
rb_ary_push(values, i);
}
return Qnil;
}
/*
* call-seq:
* enum.group_by {| obj | block } => a_hash
*
* Returns a hash, which keys are evaluated result from the
* block, and values are arrays of elements in <i>enum</i>
* corresponding to the key.
*
* (1..6).group_by {|i| i%3} #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
*
*/
static VALUE
enum_group_by(VALUE obj)
{
VALUE hash;
RETURN_ENUMERATOR(obj, 0, 0);
hash = rb_hash_new();
rb_block_call(obj, id_each, 0, 0, group_by_i, hash);
return hash;
}
static VALUE
first_i(VALUE i, VALUE *ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (NIL_P(ary[0])) {
ary[1] = i;
rb_iter_break();
}
else {
long n = NUM2LONG(ary[0]);
if (n <= 0) {
rb_iter_break();
}
rb_ary_push(ary[1], i);
n--;
ary[0] = INT2NUM(n);
}
return Qnil;
}
/*
* call-seq:
* enum.first -> obj or nil
* enum.first(n) -> an_array
*
* Returns the first element, or the first +n+ elements, of the enumerable.
* If the enumerable is empty, the first form returns <code>nil</code>, and the
* second form returns an empty array.
*
*/
static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
VALUE n, ary[2];
if (argc == 0) {
ary[0] = ary[1] = Qnil;
}
else {
rb_scan_args(argc, argv, "01", &n);
ary[0] = n;
ary[1] = rb_ary_new2(NUM2LONG(n));
}
rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)ary);
return ary[1];
}
/*
* call-seq:
* enum.sort => array
* enum.sort {| a, b | block } => array
*
* Returns an array containing the items in <i>enum</i> sorted,
* either according to their own <code><=></code> method, or by using
* the results of the supplied block. The block should return -1, 0, or
* +1 depending on the comparison between <i>a</i> and <i>b</i>. As of
* Ruby 1.8, the method <code>Enumerable#sort_by</code> implements a
* built-in Schwartzian Transform, useful when key computation or
* comparison is expensive..
*
* %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
* (1..10).sort {|a,b| b <=> a} #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
*/
static VALUE
enum_sort(VALUE obj)
{
return rb_ary_sort(enum_to_a(0, 0, obj));
}
static VALUE
sort_by_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
NODE *memo;
ENUM_WANT_SVALUE();
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
/* use NODE_DOT2 as memo(v, v, -) */
memo = rb_node_newnode(NODE_DOT2, rb_yield(i), i, 0);
rb_ary_push(ary, (VALUE)memo);
return Qnil;
}
static int
sort_by_cmp(const void *ap, const void *bp, void *data)
{
VALUE a = (*(NODE *const *)ap)->u1.value;
VALUE b = (*(NODE *const *)bp)->u1.value;
VALUE ary = (VALUE)data;
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
return rb_cmpint(rb_funcall(a, id_cmp, 1, b), a, b);
}
/*
* call-seq:
* enum.sort_by {| obj | block } => array
*
* Sorts <i>enum</i> using a set of keys generated by mapping the
* values in <i>enum</i> through the given block.
*
* %w{ apple pear fig }.sort_by {|word| word.length}
* #=> ["fig", "pear", "apple"]
*
* The current implementation of <code>sort_by</code> generates an
* array of tuples containing the original collection element and the
* mapped value. This makes <code>sort_by</code> fairly expensive when
* the keysets are simple
*
* require 'benchmark'
* include Benchmark
*
* a = (1..100000).map {rand(100000)}
*
* bm(10) do |b|
* b.report("Sort") { a.sort }
* b.report("Sort by") { a.sort_by {|a| a} }
* end
*
* <em>produces:</em>
*
* user system total real
* Sort 0.180000 0.000000 0.180000 ( 0.175469)
* Sort by 1.980000 0.040000 2.020000 ( 2.013586)
*
* However, consider the case where comparing the keys is a non-trivial
* operation. The following code sorts some files on modification time
* using the basic <code>sort</code> method.
*
* files = Dir["*"]
* sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime}
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This sort is inefficient: it generates two new <code>File</code>
* objects during every comparison. A slightly better technique is to
* use the <code>Kernel#test</code> method to generate the modification
* times directly.
*
* files = Dir["*"]
* sorted = files.sort { |a,b|
* test(?M, a) <=> test(?M, b)
* }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This still generates many unnecessary <code>Time</code> objects. A
* more efficient technique is to cache the sort keys (modification
* times in this case) before the sort. Perl users often call this
* approach a Schwartzian Transform, after Randal Schwartz. We
* construct a temporary array, where each element is an array
* containing our sort key along with the filename. We sort this array,
* and then extract the filename from the result.
*
* sorted = Dir["*"].collect { |f|
* [test(?M, f), f]
* }.sort.collect { |f| f[1] }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This is exactly what <code>sort_by</code> does internally.
*
* sorted = Dir["*"].sort_by {|f| test(?M, f)}
* sorted #=> ["mon", "tues", "wed", "thurs"]
*/
static VALUE
enum_sort_by(VALUE obj)
{
VALUE ary;
long i;
RETURN_ENUMERATOR(obj, 0, 0);
if (TYPE(obj) == T_ARRAY) {
ary = rb_ary_new2(RARRAY_LEN(obj));
}
else {
ary = rb_ary_new();
}
RBASIC(ary)->klass = 0;
rb_block_call(obj, id_each, 0, 0, sort_by_i, ary);
if (RARRAY_LEN(ary) > 1) {
ruby_qsort(RARRAY_PTR(ary), RARRAY_LEN(ary), sizeof(VALUE),
sort_by_cmp, (void *)ary);
}
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
for (i=0; i<RARRAY_LEN(ary); i++) {
RARRAY_PTR(ary)[i] = RNODE(RARRAY_PTR(ary)[i])->u2.value;
}
RBASIC(ary)->klass = rb_cArray;
return ary;
}
#define DEFINE_ENUMFUNCS(name) \
static VALUE \
name##_i(VALUE i, VALUE *memo, int argc, VALUE *argv) \
{ \
return enum_##name##_func(enum_values_pack(argc, argv), memo); \
} \
\
static VALUE \
name##_iter_i(VALUE i, VALUE *memo, int argc, VALUE *argv) \
{ \
return enum_##name##_func(enum_yield(argc, argv), memo); \
}
static VALUE
enum_all_func(VALUE result, VALUE *memo)
{
if (!RTEST(result)) {
*memo = Qfalse;
rb_iter_break();
}
return Qnil;
}
DEFINE_ENUMFUNCS(all)
/*
* call-seq:
* enum.all? [{|obj| block } ] => true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block never returns
* <code>false</code> or <code>nil</code>. If the block is not given,
* Ruby adds an implicit block of <code>{|obj| obj}</code> (that is
* <code>all?</code> will return <code>true</code> only if none of the
* collection members are <code>false</code> or <code>nil</code>.)
*
* %w{ant bear cat}.all? {|word| word.length >= 3} #=> true
* %w{ant bear cat}.all? {|word| word.length >= 4} #=> false
* [ nil, true, 99 ].all? #=> false
*
*/
static VALUE
enum_all(VALUE obj)
{
VALUE result = Qtrue;
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? all_iter_i : all_i, (VALUE)&result);
return result;
}
static VALUE
enum_any_func(VALUE result, VALUE *memo)
{
if (RTEST(result)) {
*memo = Qtrue;
rb_iter_break();
}
return Qnil;
}
DEFINE_ENUMFUNCS(any)
/*
* call-seq:
* enum.any? [{|obj| block } ] => true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block ever returns a value other
* than <code>false</code> or <code>nil</code>. If the block is not
* given, Ruby adds an implicit block of <code>{|obj| obj}</code> (that
* is <code>any?</code> will return <code>true</code> if at least one
* of the collection members is not <code>false</code> or
* <code>nil</code>.
*
* %w{ant bear cat}.any? {|word| word.length >= 3} #=> true
* %w{ant bear cat}.any? {|word| word.length >= 4} #=> true
* [ nil, true, 99 ].any? #=> true
*
*/
static VALUE
enum_any(VALUE obj)
{
VALUE result = Qfalse;
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? any_iter_i : any_i, (VALUE)&result);
return result;
}
static VALUE
enum_one_func(VALUE result, VALUE *memo)
{
if (RTEST(result)) {
if (*memo == Qundef) {
*memo = Qtrue;
}
else if (*memo == Qtrue) {
*memo = Qfalse;
rb_iter_break();
}
}
return Qnil;
}
DEFINE_ENUMFUNCS(one)
/*
* call-seq:
* enum.one? [{|obj| block }] => true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block returns <code>true</code>
* exactly once. If the block is not given, <code>one?</code> will return
* <code>true</code> only if exactly one of the collection members is
* true.
*
* %w{ant bear cat}.one? {|word| word.length == 4} #=> true
* %w{ant bear cat}.one? {|word| word.length > 4} #=> false
* %w{ant bear cat}.one? {|word| word.length < 4} #=> false
* [ nil, true, 99 ].one? #=> false
* [ nil, true, false ].one? #=> true
*
*/
static VALUE
enum_one(VALUE obj)
{
VALUE result = Qundef;
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? one_iter_i : one_i, (VALUE)&result);
if (result == Qundef) return Qfalse;
return result;
}
static VALUE
enum_none_func(VALUE result, VALUE *memo)
{
if (RTEST(result)) {
*memo = Qfalse;
rb_iter_break();
}
return Qnil;
}
DEFINE_ENUMFUNCS(none)
/*
* call-seq:
* enum.none? [{|obj| block }] => true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block never returns <code>true</code>
* for all elements. If the block is not given, <code>none?</code> will return
* <code>true</code> only if none of the collection members is true.
*
* %w{ant bear cat}.none? {|word| word.length == 5} #=> true
* %w{ant bear cat}.none? {|word| word.length >= 4} #=> false
* [].none? #=> true
* [nil].none? #=> true
* [nil,false].none? #=> true
*/
static VALUE
enum_none(VALUE obj)
{
VALUE result = Qtrue;
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? none_iter_i : none_i, (VALUE)&result);
return result;
}
static VALUE
min_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE cmp;
ENUM_WANT_SVALUE();
if (*memo == Qundef) {
*memo = i;
}
else {
cmp = rb_funcall(i, id_cmp, 1, *memo);
if (rb_cmpint(cmp, i, *memo) < 0) {
*memo = i;
}
}
return Qnil;
}
static VALUE
min_ii(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE cmp;
ENUM_WANT_SVALUE();
if (*memo == Qundef) {
*memo = i;
}
else {
VALUE ary = memo[1];
RARRAY_PTR(ary)[0] = i;
RARRAY_PTR(ary)[1] = *memo;
cmp = rb_yield(ary);
if (rb_cmpint(cmp, i, *memo) < 0) {
*memo = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.min => obj
* enum.min {| a,b | block } => obj
*
* Returns the object in <i>enum</i> with the minimum value. The
* first form assumes all objects implement <code>Comparable</code>;
* the second uses the block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.min #=> "albatross"
* a.min {|a,b| a.length <=> b.length } #=> "dog"
*/
static VALUE
enum_min(VALUE obj)
{
VALUE result[2];
result[0] = Qundef;
if (rb_block_given_p()) {
result[1] = rb_ary_new3(2, Qnil, Qnil);
rb_block_call(obj, id_each, 0, 0, min_ii, (VALUE)result);
}
else {
rb_block_call(obj, id_each, 0, 0, min_i, (VALUE)result);
}
if (result[0] == Qundef) return Qnil;
return result[0];
}
static VALUE
max_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE cmp;
ENUM_WANT_SVALUE();
if (*memo == Qundef) {
*memo = i;
}
else {
cmp = rb_funcall(i, id_cmp, 1, *memo);
if (rb_cmpint(cmp, i, *memo) > 0) {
*memo = i;
}
}
return Qnil;
}
static VALUE
max_ii(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE cmp;
ENUM_WANT_SVALUE();
if (*memo == Qundef) {
*memo = i;
}
else {
VALUE ary = memo[1];
RARRAY_PTR(ary)[0] = i;
RARRAY_PTR(ary)[1] = *memo;
cmp = rb_yield(ary);
if (rb_cmpint(cmp, i, *memo) > 0) {
*memo = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.max => obj
* enum.max {|a,b| block } => obj
*
* Returns the object in _enum_ with the maximum value. The
* first form assumes all objects implement <code>Comparable</code>;
* the second uses the block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.max #=> "horse"
* a.max {|a,b| a.length <=> b.length } #=> "albatross"
*/
static VALUE
enum_max(VALUE obj)
{
VALUE result[2];
result[0] = Qundef;
if (rb_block_given_p()) {
result[1] = rb_ary_new3(2, Qnil, Qnil);
rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)result);
}
else {
rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)result);
}
if (result[0] == Qundef) return Qnil;
return result[0];
}
static VALUE
minmax_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
int n;
ENUM_WANT_SVALUE();
if (memo[0] == Qundef) {
memo[0] = i;
memo[1] = i;
}
else {
n = rb_cmpint(rb_funcall(i, id_cmp, 1, memo[0]), i, memo[0]);
if (n < 0) {
memo[0] = i;
}
n = rb_cmpint(rb_funcall(i, id_cmp, 1, memo[1]), i, memo[1]);
if (n > 0) {
memo[1] = i;
}
}
return Qnil;
}
static VALUE
minmax_ii(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
int n;
ENUM_WANT_SVALUE();
if (memo[0] == Qundef) {
memo[0] = i;
memo[1] = i;
}
else {
VALUE ary = memo[2];
RARRAY_PTR(ary)[0] = i;
RARRAY_PTR(ary)[1] = memo[0];
n = rb_cmpint(rb_yield(ary), i, memo[0]);
if (n < 0) {
memo[0] = i;
}
RARRAY_PTR(ary)[0] = i;
RARRAY_PTR(ary)[1] = memo[1];
n = rb_cmpint(rb_yield(ary), i, memo[1]);
if (n > 0) {
memo[1] = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.minmax => [min,max]
* enum.minmax {|a,b| block } => [min,max]
*
* Returns two elements array which contains the minimum and the
* maximum value in the enumerable. The first form assumes all
* objects implement <code>Comparable</code>; the second uses the
* block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.minmax #=> ["albatross", "horse"]
* a.minmax {|a,b| a.length <=> b.length } #=> ["dog", "albatross"]
*/
static VALUE
enum_minmax(VALUE obj)
{
VALUE result[3];
VALUE ary = rb_ary_new3(2, Qnil, Qnil);
result[0] = Qundef;
if (rb_block_given_p()) {
result[2] = ary;
rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)result);
}
else {
rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)result);
}
if (result[0] != Qundef) {
RARRAY_PTR(ary)[0] = result[0];
RARRAY_PTR(ary)[1] = result[1];
}
return ary;
}
static VALUE
min_by_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE v;
ENUM_WANT_SVALUE();
v = rb_yield(i);
if (memo[0] == Qundef) {
memo[0] = v;
memo[1] = i;
}
else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) < 0) {
memo[0] = v;
memo[1] = i;
}
return Qnil;
}
/*
* call-seq:
* enum.min_by {| obj| block } => obj
*
* Returns the object in <i>enum</i> that gives the minimum
* value from the given block.
*
* a = %w(albatross dog horse)
* a.min_by {|x| x.length } #=> "dog"
*/
static VALUE
enum_min_by(VALUE obj)
{
VALUE memo[2];
RETURN_ENUMERATOR(obj, 0, 0);
memo[0] = Qundef;
memo[1] = Qnil;
rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
return memo[1];
}
static VALUE
max_by_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE v;
ENUM_WANT_SVALUE();
v = rb_yield(i);
if (memo[0] == Qundef) {
memo[0] = v;
memo[1] = i;
}
else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) > 0) {
memo[0] = v;
memo[1] = i;
}
return Qnil;
}
/*
* call-seq:
* enum.max_by {| obj| block } => obj
*
* Returns the object in <i>enum</i> that gives the maximum
* value from the given block.
*
* a = %w(albatross dog horse)
* a.max_by {|x| x.length } #=> "albatross"
*/
static VALUE
enum_max_by(VALUE obj)
{
VALUE memo[2];
RETURN_ENUMERATOR(obj, 0, 0);
memo[0] = Qundef;
memo[1] = Qnil;
rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
return memo[1];
}
static VALUE
minmax_by_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE v;
ENUM_WANT_SVALUE();
v = rb_yield(i);
if (memo[0] == Qundef) {
memo[0] = v;
memo[1] = v;
memo[2] = i;
memo[3] = i;
}
else {
if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) < 0) {
memo[0] = v;
memo[2] = i;
}
if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[1]), v, memo[1]) > 0) {
memo[1] = v;
memo[3] = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.minmax_by {| obj| block } => [min, max]
*
* Returns two elements array array containing the objects in
* <i>enum</i> that gives the minimum and maximum values respectively
* from the given block.
*
* a = %w(albatross dog horse)
* a.minmax_by {|x| x.length } #=> ["dog", "albatross"]
*/
static VALUE
enum_minmax_by(VALUE obj)
{
VALUE memo[4];
RETURN_ENUMERATOR(obj, 0, 0);
memo[0] = Qundef;
memo[1] = Qundef;
memo[2] = Qnil;
memo[3] = Qnil;
rb_block_call(obj, id_each, 0, 0, minmax_by_i, (VALUE)memo);
return rb_assoc_new(memo[2], memo[3]);
}
static VALUE
member_i(VALUE iter, VALUE *memo, int argc, VALUE *argv)
{
if (rb_equal(enum_values_pack(argc, argv), memo[0])) {
memo[1] = Qtrue;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.include?(obj) => true or false
* enum.member?(obj) => true or false
*
* Returns <code>true</code> if any member of <i>enum</i> equals
* <i>obj</i>. Equality is tested using <code>==</code>.
*
* IO.constants.include? :SEEK_SET #=> true
* IO.constants.include? :SEEK_NO_FURTHER #=> false
*
*/
static VALUE
enum_member(VALUE obj, VALUE val)
{
VALUE memo[2];
memo[0] = val;
memo[1] = Qfalse;
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo[1];
}
static VALUE
each_with_index_i(VALUE i, VALUE memo, int argc, VALUE *argv)
{
long n = (*(VALUE *)memo)++;
return rb_yield_values(2, enum_values_pack(argc, argv), INT2NUM(n));
}
/*
* call-seq:
* enum.each_with_index {|obj, i| block } -> enum
*
* Calls <em>block</em> with two arguments, the item and its index,
* for each item in <i>enum</i>. Given arguments are passed through
* to #each().
*
* hash = Hash.new
* %w(cat dog wombat).each_with_index {|item, index|
* hash[item] = index
* }
* hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
*
*/
static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
long memo;
RETURN_ENUMERATOR(obj, argc, argv);
memo = 0;
rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)&memo);
return obj;
}
/*
* call-seq:
* enum.reverse_each {|item| block }
*
* Traverses <i>enum</i> in reverse order.
*/
static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
long i;
RETURN_ENUMERATOR(obj, argc, argv);
ary = enum_to_a(argc, argv, obj);
for (i = RARRAY_LEN(ary); --i >= 0; ) {
rb_yield(RARRAY_PTR(ary)[i]);
}
return obj;
}
static VALUE
zip_ary(VALUE val, NODE *memo, int argc, VALUE *argv)
{
volatile VALUE result = memo->u1.value;
volatile VALUE args = memo->u2.value;
int n = memo->u3.cnt++;
volatile VALUE tmp;
int i;
tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
rb_ary_store(tmp, 0, enum_values_pack(argc, argv));
for (i=0; i<RARRAY_LEN(args); i++) {
VALUE e = RARRAY_PTR(args)[i];
if (RARRAY_LEN(e) <= n) {
rb_ary_push(tmp, Qnil);
}
else {
rb_ary_push(tmp, RARRAY_PTR(e)[n]);
}
}
if (NIL_P(result)) {
rb_yield(tmp);
}
else {
rb_ary_push(result, tmp);
}
return Qnil;
}
static VALUE
call_next(VALUE *v)
{
return v[0] = rb_funcall(v[1], id_next, 0, 0);
}
static VALUE
call_stop(VALUE *v)
{
return v[0] = Qundef;
}
static VALUE
zip_i(VALUE val, NODE *memo, int argc, VALUE *argv)
{
volatile VALUE result = memo->u1.value;
volatile VALUE args = memo->u2.value;
volatile VALUE tmp;
int i;
tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
rb_ary_store(tmp, 0, enum_values_pack(argc, argv));
for (i=0; i<RARRAY_LEN(args); i++) {
if (NIL_P(RARRAY_PTR(args)[i])) {
rb_ary_push(tmp, Qnil);
}
else {
VALUE v[2];
v[1] = RARRAY_PTR(args)[i];
rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, 0);
if (v[0] == Qundef) {
RARRAY_PTR(args)[i] = Qnil;
v[0] = Qnil;
}
rb_ary_push(tmp, v[0]);
}
}
if (NIL_P(result)) {
rb_yield(tmp);
}
else {
rb_ary_push(result, tmp);
}
return Qnil;
}
/*
* call-seq:
* enum.zip(arg, ...) => enumerator
* enum.zip(arg, ...) {|arr| block } => nil
*
* Takes one element from <i>enum</i> and merges corresponding
* elements from each <i>args</i>. This generates a sequence of
* <em>n</em>-element arrays, where <em>n</em> is one more than the
* count of arguments. The length of the resulting sequence will be
* <code>enum#size</code. If the size of any argument is less than
* <code>enum#size</code>, <code>nil</code> values are supplied. If
* a block is given, it is invoked for each output array, otherwise
* an array of arrays is returned.
*
* a = [ 4, 5, 6 ]
* b = [ 7, 8, 9 ]
*
* [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
* [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]]
* a.zip([1,2],[8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
*
*/
static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
int i;
ID conv;
NODE *memo;
VALUE result = Qnil;
VALUE args = rb_ary_new4(argc, argv);
int allary = Qtrue;
argv = RARRAY_PTR(args);
for (i=0; i<argc; i++) {
VALUE ary = rb_check_array_type(argv[i]);
if (NIL_P(ary)) {
allary = Qfalse;
break;
}
argv[i] = ary;
}
if (!allary) {
CONST_ID(conv, "to_enum");
for (i=0; i<argc; i++) {
argv[i] = rb_funcall(argv[i], conv, 1, ID2SYM(id_each));
}
}
if (!rb_block_given_p()) {
result = rb_ary_new();
}
/* use NODE_DOT2 as memo(v, v, -) */
memo = rb_node_newnode(NODE_DOT2, result, args, 0);
rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
return result;
}
static VALUE
take_i(VALUE i, VALUE *arg, int argc, VALUE *argv)
{
rb_ary_push(arg[0], enum_values_pack(argc, argv));
if (--arg[1] == 0) rb_iter_break();
return Qnil;
}
/*
* call-seq:
* enum.take(n) => array
*
* Returns first n elements from <i>enum</i>.
*
* a = [1, 2, 3, 4, 5, 0]
* a.take(3) # => [1, 2, 3]
*
*/
static VALUE
enum_take(VALUE obj, VALUE n)
{
VALUE args[2];
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to take negative size");
}
if (len == 0) return rb_ary_new2(0);
args[0] = rb_ary_new();
args[1] = len;
rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)args);
return args[0];
}
static VALUE
take_while_i(VALUE i, VALUE *ary, int argc, VALUE *argv)
{
if (!RTEST(enum_yield(argc, argv))) rb_iter_break();
rb_ary_push(*ary, enum_values_pack(argc, argv));
return Qnil;
}
/*
* call-seq:
* enum.take_while {|arr| block } => array
*
* Passes elements to the block until the block returns nil or false,
* then stops iterating and returns an array of all prior elements.
*
* a = [1, 2, 3, 4, 5, 0]
* a.take_while {|i| i < 3 } # => [1, 2]
*
*/
static VALUE
enum_take_while(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, take_while_i, (VALUE)&ary);
return ary;
}
static VALUE
drop_i(VALUE i, VALUE *arg, int argc, VALUE *argv)
{
if (arg[1] == 0) {
rb_ary_push(arg[0], enum_values_pack(argc, argv));
}
else {
arg[1]--;
}
return Qnil;
}
/*
* call-seq:
* enum.drop(n) => array
*
* Drops first n elements from <i>enum</i>, and returns rest elements
* in an array.
*
* a = [1, 2, 3, 4, 5, 0]
* a.drop(3) # => [4, 5, 0]
*
*/
static VALUE
enum_drop(VALUE obj, VALUE n)
{
VALUE args[2];
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to drop negative size");
}
args[1] = len;
args[0] = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)args);
return args[0];
}
static VALUE
drop_while_i(VALUE i, VALUE *args, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (!args[1] && !RTEST(rb_yield(i))) {
args[1] = Qtrue;
}
if (args[1]) {
rb_ary_push(args[0], i);
}
return Qnil;
}
/*
* call-seq:
* enum.drop_while {|arr| block } => array
*
* Drops elements up to, but not including, the first element for
* which the block returns nil or false and returns an array
* containing the remaining elements.
*
* a = [1, 2, 3, 4, 5, 0]
* a.drop_while {|i| i < 3 } # => [3, 4, 5, 0]
*
*/
static VALUE
enum_drop_while(VALUE obj)
{
VALUE args[2];
RETURN_ENUMERATOR(obj, 0, 0);
args[0] = rb_ary_new();
args[1] = Qfalse;
rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)args);
return args[0];
}
static VALUE
cycle_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
rb_ary_push(ary, i);
rb_yield(i);
return Qnil;
}
/*
* call-seq:
* enum.cycle {|obj| block }
* enum.cycle(n) {|obj| block }
*
* Calls <i>block</i> for each element of <i>enum</i> repeatedly _n_
* times or forever if none or nil is given. If a non-positive
* number is given or the collection is empty, does nothing. Returns
* nil if the loop has finished without getting interrupted.
*
* Enumerable#cycle saves elements in an internal array so changes
* to <i>enum</i> after the first pass have no effect.
*
* a = ["a", "b", "c"]
* a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever.
* a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c.
*
*/
static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
VALUE nv = Qnil;
long n, i, len;
rb_scan_args(argc, argv, "01", &nv);
RETURN_ENUMERATOR(obj, argc, argv);
if (NIL_P(nv)) {
n = -1;
}
else {
n = NUM2LONG(nv);
if (n <= 0) return Qnil;
}
ary = rb_ary_new();
RBASIC(ary)->klass = 0;
rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
len = RARRAY_LEN(ary);
if (len == 0) return Qnil;
while (n < 0 || 0 < --n) {
for (i=0; i<len; i++) {
rb_yield(RARRAY_PTR(ary)[i]);
}
}
return Qnil; /* not reached */
}
/*
* The <code>Enumerable</code> mixin provides collection classes with
* several traversal and searching methods, and with the ability to
* sort. The class must provide a method <code>each</code>, which
* yields successive members of the collection. If
* <code>Enumerable#max</code>, <code>#min</code>, or
* <code>#sort</code> is used, the objects in the collection must also
* implement a meaningful <code><=></code> operator, as these methods
* rely on an ordering between members of the collection.
*/
void
Init_Enumerable(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
rb_mEnumerable = rb_define_module("Enumerable");
rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
rb_define_method(rb_mEnumerable, "count", enum_count, -1);
rb_define_method(rb_mEnumerable, "find", enum_find, -1);
rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
rb_define_method(rb_mEnumerable, "first", enum_first, -1);
rb_define_method(rb_mEnumerable, "all?", enum_all, 0);
rb_define_method(rb_mEnumerable, "any?", enum_any, 0);
rb_define_method(rb_mEnumerable, "one?", enum_one, 0);
rb_define_method(rb_mEnumerable, "none?", enum_none, 0);
rb_define_method(rb_mEnumerable, "min", enum_min, 0);
rb_define_method(rb_mEnumerable, "max", enum_max, 0);
rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
rb_define_method(rb_mEnumerable, "min_by", enum_min_by, 0);
rb_define_method(rb_mEnumerable, "max_by", enum_max_by, 0);
rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
rb_define_method(rb_mEnumerable, "take", enum_take, 1);
rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
id_eqq = rb_intern("===");
id_each = rb_intern("each");
id_cmp = rb_intern("<=>");
id_next = rb_intern("next");
id_size = rb_intern("size");
}